Source code for NiaPy.algorithms.basic.cso

# encoding=utf8
import logging
import math

import numpy as np
from NiaPy.algorithms.algorithm import Algorithm
logging.basicConfig()
logger = logging.getLogger('NiaPy.algorithms.basic')
logger.setLevel('INFO')

__all__ = ['CatSwarmOptimization']

[docs]class CatSwarmOptimization(Algorithm): r"""Implementation of Cat swarm optimiization algorithm. **Algorithm:** Cat swarm optimization **Date:** 2019 **Author:** Mihael Baketarić **License:** MIT **Reference paper:** Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.. """ Name = ['CatSwarmOptimization', 'CSO']
[docs] @staticmethod def algorithmInfo(): r"""Get algorithm information. Returns: str: Algorithm information. See Also: * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` """ return r"""Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg."""
[docs] @staticmethod def typeParameters(): return {
'NP': lambda x: isinstance(x, int) and x > 0, 'MR': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1, 'C1': lambda x: isinstance(x, (int, float)) and x >= 0, 'SMP': lambda x: isinstance(x, int) and x > 0, 'SPC': lambda x: isinstance(x, bool), 'CDC': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1, 'SRD': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1, 'vMax': lambda x: isinstance(x, (int, float)) and x > 0 }
[docs] def setParameters(self, NP=30, MR=0.1, C1=2.05, SMP=3, SPC=True, CDC=0.85, SRD=0.2, vMax=1.9, **ukwargs): r"""Set the algorithm parameters. Arguments: NP (int): Number of individuals in population. MR (float): Mixture ratio. C1 (float): Constant in tracing mode. SMP (int): Seeking memory pool. SPC (bool): Self-position considering. CDC (float): Decides how many dimensions will be varied. SRD (float): Seeking range of the selected dimension. vMax (float): Maximal velocity. See Also: * :func:`NiaPy.algorithms.Algorithm.setParameters` """ Algorithm.setParameters(self, NP=NP, **ukwargs) self.MR, self.C1, self.SMP, self.SPC, self.CDC, self.SRD, self.vMax = MR, C1, SMP, SPC, CDC, SRD, vMax
[docs] def initPopulation(self, task): r"""Initialize population. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: 1. Initialized population. 2. Initialized populations fitness/function values. 3. Additional arguments: * Dictionary of modes (seek or trace) and velocities for each cat See Also: * :func:`NiaPy.algorithms.Algorithm.initPopulation` """ pop, fpop, d = Algorithm.initPopulation(self, task) d['modes'] = self.randomSeekTrace() d['velocities'] = self.uniform(-self.vMax, self.vMax, [len(pop), task.D]) return pop, fpop, d
[docs] def repair(self, x, l, u): r"""Repair array to range. Args: x (numpy.ndarray): Array to repair. l (numpy.ndarray): Lower limit of allowed range. u (numpy.ndarray): Upper limit of allowed range. Returns: numpy.ndarray: Repaired array. """ ir = np.where(x < l) x[ir] = l[ir] ir = np.where(x > u) x[ir] = u[ir] return x
[docs] def randomSeekTrace(self): r"""Set cats into seeking/tracing mode. Returns: numpy.ndarray: One or zero. One means tracing mode. Zero means seeking mode. Length of list is equal to NP. """ lista = np.zeros((self.NP,), dtype=int) indexes = np.arange(self.NP) self.Rand.shuffle(indexes) lista[indexes[:int(self.NP * self.MR)]] = 1 return lista
[docs] def weightedSelection(self, weights): r"""Random selection considering the weights. Args: weights (numpy.ndarray): weight for each potential position. Returns: int: index of selected next position. """ cumulative_sum = np.cumsum(weights) return np.argmax(cumulative_sum >= (self.rand() * cumulative_sum[-1]))
[docs] def seekingMode(self, task, cat, fcat, pop, fpop, fxb): r"""Seeking mode. Args: task (Task): Optimization task. cat (numpy.ndarray): Individual from population. fcat (float): Current individual's fitness/function value. pop (numpy.ndarray): Current population. fpop (numpy.ndarray): Current population fitness/function values. fxb (float): Current best cat fitness/function value. Returns: Tuple[numpy.ndarray, float, numpy.ndarray, float]: 1. Updated individual's position 2. Updated individual's fitness/function value 3. Updated global best position 4. Updated global best fitness/function value """ cat_copies = [] cat_copies_fs = [] for j in range(self.SMP - 1 if self.SPC else self.SMP): cat_copies.append(cat.copy()) indexes = np.arange(task.D) self.Rand.shuffle(indexes) to_vary_indexes = indexes[:int(task.D * self.CDC)] if self.randint(2) == 1: cat_copies[j][to_vary_indexes] += cat_copies[j][to_vary_indexes] * self.SRD else: cat_copies[j][to_vary_indexes] -= cat_copies[j][to_vary_indexes] * self.SRD cat_copies[j] = task.repair(cat_copies[j]) cat_copies_fs.append(task.eval(cat_copies[j])) if self.SPC: cat_copies.append(cat.copy()) cat_copies_fs.append(fcat) cat_copies_select_probs = np.ones(len(cat_copies)) fmax = np.max(cat_copies_fs) fmin = np.min(cat_copies_fs) if any(x != cat_copies_fs[0] for x in cat_copies_fs): fb = fmax if math.isinf(fb): cat_copies_select_probs = np.full(len(cat_copies), fb) else: cat_copies_select_probs = np.abs(cat_copies_fs - fb) / (fmax - fmin) if fmin < fxb: fxb = fmin ind = self.randint(self.NP, 1, 0) pop[ind] = cat_copies[np.where(cat_copies_fs == fmin)[0][0]] fpop[ind] = fmin sel_index = self.weightedSelection(cat_copies_select_probs) return cat_copies[sel_index], cat_copies_fs[sel_index], pop, fpop
[docs] def tracingMode(self, task, cat, velocity, xb): r"""Tracing mode. Args: task (Task): Optimization task. cat (numpy.ndarray): Individual from population. velocity (numpy.ndarray): Velocity of individual. xb (numpy.ndarray): Current best individual. Returns: Tuple[numpy.ndarray, float, numpy.ndarray]: 1. Updated individual's position 2. Updated individual's fitness/function value 3. Updated individual's velocity vector """ Vnew = self.repair(velocity + (self.uniform(0, 1, len(velocity)) * self.C1 * (xb - cat)), np.full(task.D, -self.vMax), np.full(task.D, self.vMax)) cat_new = task.repair(cat + Vnew) return cat_new, task.eval(cat_new), Vnew
[docs] def runIteration(self, task, pop, fpop, xb, fxb, velocities, modes, **dparams): r"""Core function of Cat Swarm Optimization algorithm. Args: task (Task): Optimization task. pop (numpy.ndarray): Current population. fpop (numpy.ndarray): Current population fitness/function values. xb (numpy.ndarray): Current best individual. fxb (float): Current best cat fitness/function value. velocities (numpy.ndarray): Velocities of individuals. modes (numpy.ndarray): Flag of each individual. **dparams (Dict[str, Any]): Additional function arguments. Returns: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: 1. New population. 2. New population fitness/function values. 3. New global best solution. 4. New global best solutions fitness/objective value. 5. Additional arguments: * Dictionary of modes (seek or trace) and velocities for each cat. """ pop_copies = pop.copy() for k in range(len(pop_copies)): if modes[k] == 0: pop_copies[k], fpop[k], pop_copies[:], fpop[:] = self.seekingMode(task, pop_copies[k], fpop[k], pop_copies, fpop, fxb) else: # if cat in tracing mode pop_copies[k], fpop[k], velocities[k] = self.tracingMode(task, pop_copies[k], velocities[k], xb) ib = np.argmin(fpop) if fpop[ib] < fxb: xb, fxb = pop_copies[ib].copy(), fpop[ib] return pop_copies, fpop, xb, fxb, {'velocities': velocities, 'modes': self.randomSeekTrace()}
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3