Source code for NiaPy.algorithms.basic.fwa

# encoding=utf8
import logging
from numpy import apply_along_axis, argmin, argmax, sum, sqrt, round, argsort, fabs, asarray, where
from NiaPy.algorithms.algorithm import Algorithm
from NiaPy.util import fullArray

logging.basicConfig()
logger = logging.getLogger('NiaPy.algorithms.basic')
logger.setLevel('INFO')

__all__ = ['FireworksAlgorithm', 'EnhancedFireworksAlgorithm', 'DynamicFireworksAlgorithm', 'DynamicFireworksAlgorithmGauss', 'BareBonesFireworksAlgorithm']

[docs]class BareBonesFireworksAlgorithm(Algorithm): r"""Implementation of Bare Bones Fireworks Algorithm. Algorithm: Bare Bones Fireworks Algorithm Date: 2018 Authors: Klemen Berkovič License: MIT Reference URL: https://www.sciencedirect.com/science/article/pii/S1568494617306609 Reference paper: Junzhi Li, Ying Tan, The bare bones fireworks algorithm: A minimalist global optimizer, Applied Soft Computing, Volume 62, 2018, Pages 454-462, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.10.046. Attributes: Name (lsit of str): List of strings representing algorithm names n (int): Number of spraks C_a (float): amplification coefficient C_r (float): reduction coefficient """ Name = ['BareBonesFireworksAlgorithm', 'BBFWA']
[docs] @staticmethod def algorithmInfo(): r"""Get default information of algorithm. Returns: str: Basic information. See Also: * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` """ return r"""Junzhi Li, Ying Tan, The bare bones fireworks algorithm: A minimalist global optimizer, Applied Soft Computing, Volume 62, 2018, Pages 454-462, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.10.046."""
[docs] @staticmethod def typeParameters(): return {
'n': lambda x: isinstance(x, int) and x > 0, 'C_a': lambda x: isinstance(x, (float, int)) and x > 1, 'C_r': lambda x: isinstance(x, (float, int)) and 0 < x < 1 }
[docs] def setParameters(self, n=10, C_a=1.5, C_r=0.5, **ukwargs): r"""Set the arguments of an algorithm. Arguments: n (int): Number of sparks :math:`\in [1, \infty)`. C_a (float): Amplification coefficient :math:`\in [1, \infty)`. C_r (float): Reduction coefficient :math:`\in (0, 1)`. """ ukwargs.pop('NP', None) Algorithm.setParameters(self, NP=1, **ukwargs) self.n, self.C_a, self.C_r = n, C_a, C_r
[docs] def initPopulation(self, task): r"""Initialize starting population. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, float, Dict[str, Any]]: 1. Initial solution. 2. Initial solution function/fitness value. 3. Additional arguments: * A (numpy.ndarray): Starting aplitude or search range. """ x, x_fit, d = Algorithm.initPopulation(self, task) d.update({'A': task.bRange}) return x, x_fit, d
[docs] def runIteration(self, task, x, x_fit, xb, fxb, A, **dparams): r"""Core function of Bare Bones Fireworks Algorithm. Args: task (Task): Optimization task. x (numpy.ndarray): Current solution. x_fit (float): Current solution fitness/function value. xb (numpy.ndarray): Current best solution. fxb (float): Current best solution fitness/function value. A (numpy.ndarray): Serach range. dparams (Dict[str, Any]): Additional parameters. Returns: Tuple[numpy.ndarray, float, numpy.ndarray, float, Dict[str, Any]]: 1. New solution. 2. New solution fitness/function value. 3. New global best solution. 4. New global best solutions fitness/objective value. 5. Additional arguments: * A (numpy.ndarray): Serach range. """ S = apply_along_axis(task.repair, 1, self.uniform(x - A, x + A, [self.n, task.D]), self.Rand) S_fit = apply_along_axis(task.eval, 1, S) iS = argmin(S_fit) if S_fit[iS] < x_fit: x, x_fit, A = S[iS], S_fit[iS], self.C_a * A else: A = self.C_r * A return x, x_fit, x.copy(), x_fit, {'A': A}
[docs]class FireworksAlgorithm(Algorithm): r"""Implementation of fireworks algorithm. Algorithm: Fireworks Algorithm Date: 2018 Authors: Klemen Berkovič License: MIT Reference URL: https://www.springer.com/gp/book/9783662463529 Reference paper: Tan, Ying. "Fireworks algorithm." Heidelberg, Germany: Springer 10 (2015): 978-3 Attributes: Name (List[str]): List of stirngs representing algorithm names. """ Name = ['FireworksAlgorithm', 'FWA']
[docs] @staticmethod def algorithmInfo(): r"""Get default information of algorithm. Returns: str: Basic information. See Also: * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` """ return r"""Tan, Ying. "Fireworks algorithm." Heidelberg, Germany: Springer 10 (2015): 978-3."""
[docs] @staticmethod def typeParameters(): return {
'N': lambda x: isinstance(x, int) and x > 0, 'm': lambda x: isinstance(x, int) and x > 0, 'a': lambda x: isinstance(x, (int, float)) and x > 0, 'b': lambda x: isinstance(x, (int, float)) and x > 0, 'epsilon': lambda x: isinstance(x, float) and 0 < x < 1 }
[docs] def setParameters(self, N=40, m=40, a=1, b=2, A=40, epsilon=1e-31, **ukwargs): r"""Set the arguments of an algorithm. Arguments: N (int): Number of Fireworks m (int): Number of sparks a (int): Limitation of sparks b (int): Limitation of sparks A (float): -- epsilon (float): Small number for non 0 devision """ Algorithm.setParameters(self, NP=N, **ukwargs) self.m, self.a, self.b, self.A, self.epsilon = m, a, b, A, epsilon
[docs] def initAmplitude(self, task): r"""Initialize amplitudes for dimensions. Args: task (Task): Optimization task. Returns: numpy.ndarray[float]: Starting amplitudes. """ return fullArray(self.A, task.D)
[docs] def SparsksNo(self, x_f, xw_f, Ss): r"""Calculate number of sparks based on function value of individual. Args: x_f (float): Individuals function/fitness value. xw_f (float): Worst individual function/fitness value. Ss (): TODO Returns: int: Number of sparks that individual will create. """ s = self.m * (xw_f - x_f + self.epsilon) / (Ss + self.epsilon) return round(self.b * self.m) if s > self.b * self.m and self.a < self.b < 1 else round(self.a * self.m)
[docs] def ExplosionAmplitude(self, x_f, xb_f, A, As): r"""Calculate explosion amplitude. Args: x_f (float): Individuals function/fitness value. xb_f (float): Best individuals function/fitness value. A (numpy.ndarray): Amplitudes. As (): Returns: numpy.ndarray: TODO. """ return A * (x_f - xb_f - self.epsilon) / (As + self.epsilon)
[docs] def ExplodeSpark(self, x, A, task): r"""Explode a spark. Args: x (numpy.ndarray): Individuals creating spark. A (numpy.ndarray): Amplitude of spark. task (Task): Optimization task. Returns: numpy.ndarray: Sparks exploded in with specified amplitude. """ return self.Mapping(x + self.rand(task.D) * self.uniform(-A, A, task.D), task)
[docs] def GaussianSpark(self, x, task): r"""Create gaussian spark. Args: x (numpy.ndarray): Individual creating a spark. task (Task): Optimization task. Returns: numpy.ndarray: Spark exploded based on gaussian amplitude. """ return self.Mapping(x + self.rand(task.D) * self.normal(1, 1, task.D), task)
[docs] def Mapping(self, x, task): r"""Fix value to bounds.. Args: x (numpy.ndarray): Individual to fix. task (Task): Optimization task. Returns: numpy.ndarray: Individual in search range. """ ir = where(x > task.Upper) x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] ir = where(x < task.Lower) x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] return x
[docs] def R(self, x, FW): r"""Calculate ranges. Args: x (numpy.ndarray): Individual in population. FW (numpy.ndarray): Current population. Returns: numpy,ndarray[float]: Ranges values. """ return sqrt(sum(fabs(x - FW)))
[docs] def p(self, r, Rs): r"""Calculate p. Args: r (float): Range of individual. Rs (float): Sum of ranges. Returns: float: p value. """ return r / Rs
[docs] def NextGeneration(self, FW, FW_f, FWn, task): r"""Generate new generation of individuals. Args: FW (numpy.ndarray): Current population. FW_f (numpy.ndarray[float]): Currents population fitness/function values. FWn (numpy.ndarray): New population. task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float]]: 1. New population. 2. New populations fitness/function values. """ FWn_f = apply_along_axis(task.eval, 1, FWn) ib = argmin(FWn_f) if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] R = asarray([self.R(FWn[i], FWn) for i in range(len(FWn))]) Rs = sum(R) P = asarray([self.p(R[i], Rs) for i in range(len(FWn))]) isort = argsort(P)[-(self.NP - 1):] FW[1:], FW_f[1:] = asarray(FWn)[isort], FWn_f[isort] return FW, FW_f
[docs] def initPopulation(self, task): r"""Initialize starting population. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: 1. Initialized population. 2. Initialized populations function/fitness values. 3. Additional arguments: * Ah (numpy.ndarray): Initialized amplitudes. See Also: * :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` """ FW, FW_f, d = Algorithm.initPopulation(self, task) Ah = self.initAmplitude(task) d.update({'Ah': Ah}) return FW, FW_f, d
[docs] def runIteration(self, task, FW, FW_f, xb, fxb, Ah, **dparams): r"""Core function of Fireworks algorithm. Args: task (Task): Optimization task. FW (numpy.ndarray): Current population. FW_f (numpy.ndarray[float]): Current populations function/fitness values. xb (numpy.ndarray): Global best individual. fxb (float): Global best individuals fitness/function value. Ah (numpy.ndarray): Current amplitudes. **dparams (Dict[str, Any)]: Additional arguments Returns: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: 1. Initialized population. 2. Initialized populations function/fitness values. 3. New global best solution. 4. New global best solutions fitness/objective value. 5. Additional arguments: * Ah (numpy.ndarray): Initialized amplitudes. See Also: * :func:`FireworksAlgorithm.SparsksNo`. * :func:`FireworksAlgorithm.ExplosionAmplitude` * :func:`FireworksAlgorithm.ExplodeSpark` * :func:`FireworksAlgorithm.GaussianSpark` * :func:`FireworksAlgorithm.NextGeneration` """ iw, ib = argmax(FW_f), 0 Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(self.NP)] FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), task)) FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) xb, fxb = self.getBest(FW, FW_f, xb, fxb) return FW, FW_f, xb, fxb, {'Ah': Ah}
[docs]class EnhancedFireworksAlgorithm(FireworksAlgorithm): r"""Implementation of enganced fireworks algorithm. Algorithm: Enhanced Fireworks Algorithm Date: 2018 Authors: Klemen Berkovič License: MIT Reference URL: https://ieeexplore.ieee.org/document/6557813/ Reference paper: S. Zheng, A. Janecek and Y. Tan, "Enhanced Fireworks Algorithm," 2013 IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 2069-2077. doi: 10.1109/CEC.2013.6557813 Attributes: Name (List[str]): List of strings representing algorithm names. Ainit (float): Initial amplitude of sparks. Afinal (float): Maximal amplitude of sparks. """ Name = ['EnhancedFireworksAlgorithm', 'EFWA']
[docs] @staticmethod def algorithmInfo(): r"""Get default information of algorithm. Returns: str: Basic information. See Also: * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` """ return r"""S. Zheng, A. Janecek and Y. Tan, "Enhanced Fireworks Algorithm," 2013 IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 2069-2077. doi: 10.1109/CEC.2013.6557813"""
[docs] @staticmethod def typeParameters(): r"""Get dictionary with functions for checking values of parameters. Returns: Dict[str, Callable]: * Ainit (Callable[[Union[int, float]], bool]): TODO * Afinal (Callable[[Union[int, float]], bool]): TODO See Also: * :func:`FireworksAlgorithm.typeParameters` """ d = FireworksAlgorithm.typeParameters() d['Ainit'] = lambda x: isinstance(x, (float, int)) and x > 0 d['Afinal'] = lambda x: isinstance(x, (float, int)) and x > 0 return d
[docs] def setParameters(self, Ainit=20, Afinal=5, **ukwargs): r"""Set EnhancedFireworksAlgorithm algorithms core parameters. Args: Ainit (float): TODO Afinal (float): TODO **ukwargs (Dict[str, Any]): Additional arguments. See Also: * :func:`FireworksAlgorithm.setParameters` """ FireworksAlgorithm.setParameters(self, **ukwargs) self.Ainit, self.Afinal = Ainit, Afinal
[docs] def initRanges(self, task): r"""Initialize ranges. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray[float], numpy.ndarray[float], numpy.ndarray[float]]: 1. Initial amplitude values over dimensions. 2. Final amplitude values over dimensions. 3. uAmin. """ Ainit, Afinal = fullArray(self.Ainit, task.D), fullArray(self.Afinal, task.D) return Ainit, Afinal, self.uAmin(Ainit, Afinal, task)
[docs] def uAmin(self, Ainit, Afinal, task): r"""Calculate the value of `uAmin`. Args: Ainit (numpy.ndarray[float]): Initial amplitude values over dimensions. Afinal (numpy.ndarray[float]): Final amplitude values over dimensions. task (Task): Optimization task. Returns: numpy.ndarray[float]: uAmin. """ return Ainit - sqrt(task.Evals * (2 * task.nFES - task.Evals)) * (Ainit - Afinal) / task.nFES
[docs] def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): r"""Calculate explosion amplitude. Args: x_f (float): Individuals function/fitness value. xb_f (float): Best individual function/fitness value. Ah (numpy.ndarray): As (): TODO. A_min (Optional[numpy.ndarray]): Minimal amplitude values. task (Task): Optimization task. Returns: numpy.ndarray: New amplitude. """ A = FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As) ifix = where(A < A_min) A[ifix] = A_min[ifix] return A
[docs] def GaussianSpark(self, x, xb, task): r"""Create new individual. Args: x (numpy.ndarray): xb (numpy.ndarray): task (Task): Optimization task. Returns: numpy.ndarray: New individual generated by gaussian noise. """ return self.Mapping(x + self.rand(task.D) * (xb - x) * self.normal(1, 1, task.D), task)
[docs] def NextGeneration(self, FW, FW_f, FWn, task): r"""Generate new population. Args: FW (numpy.ndarray): Current population. FW_f (numpy.ndarray[float]): Current populations fitness/function values. FWn (numpy.ndarray): New population. task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float]]: 1. New population. 2. New populations fitness/function values. """ FWn_f = apply_along_axis(task.eval, 1, FWn) ib = argmin(FWn_f) if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] for i in range(1, self.NP): r = self.randint(len(FWn)) if FWn_f[r] < FW_f[i]: FW[i], FW_f[i] = FWn[r], FWn_f[r] return FW, FW_f
[docs] def initPopulation(self, task): r"""Initialize population. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: 1. Initial population. 2. Initial populations fitness/function values. 3. Additional arguments: * Ainit (numpy.ndarray): Initial amplitude values. * Afinal (numpy.ndarray): Final amplitude values. * A_min (numpy.ndarray): Minimal amplitude values. See Also: * :func:`FireworksAlgorithm.initPopulation` """ FW, FW_f, d = FireworksAlgorithm.initPopulation(self, task) Ainit, Afinal, A_min = self.initRanges(task) d.update({'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min}) return FW, FW_f, d
[docs] def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ainit, Afinal, A_min, **dparams): r"""Core function of EnhancedFireworksAlgorithm algorithm. Args: task (Task): Optimization task. FW (numpy.ndarray): Current population. FW_f (numpy.ndarray[float]): Current populations fitness/function values. xb (numpy.ndarray): Global best individual. fxb (float): Global best individuals function/fitness value. Ah (numpy.ndarray[float]): Current amplitude. Ainit (numpy.ndarray[float]): Initial amplitude. Afinal (numpy.ndarray[float]): Final amplitude values. A_min (numpy.ndarray[float]): Minial amplitude values. **dparams (Dict[str, Any]): Additional arguments. Returns: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: 1. Initial population. 2. Initial populations fitness/function values. 3. New global best solution. 4. New global best solutions fitness/objective value. 5. Additional arguments: * Ainit (numpy.ndarray): Initial amplitude values. * Afinal (numpy.ndarray): Final amplitude values. * A_min (numpy.ndarray): Minimal amplitude values. """ iw, ib = argmax(FW_f), 0 Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As, A_min) for i in range(self.NP)] A_min = self.uAmin(Ainit, Afinal, task) FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) xb, fxb = self.getBest(FW, FW_f, xb, fxb) return FW, FW_f, xb, fxb, {'Ah': Ah, 'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min}
[docs]class DynamicFireworksAlgorithmGauss(EnhancedFireworksAlgorithm): r"""Implementation of dynamic fireworks algorithm. Algorithm: Dynamic Fireworks Algorithm Date: 2018 Authors: Klemen Berkovič License: MIT Reference URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 Reference paper: S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 Attributes: Name (List[str]): List of strings representing algorithm names. A_cf (Union[float, int]): TODO C_a (Union[float, int]): Amplification factor. C_r (Union[float, int]): Reduction factor. epsilon (Union[float, int]): Small value. """ Name = ['DynamicFireworksAlgorithmGauss', 'dynFWAG']
[docs] @staticmethod def algorithmInfo(): r"""Get default information of algorithm. Returns: str: Basic information. See Also: * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` """ return r"""S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485"""
[docs] @staticmethod def typeParameters(): r"""Get dictionary with functions for checking values of parameters. Returns: Dict[str, Callable]: * A_cr (Callable[[Union[float, int], bool]): TODo See Also: * :func:`FireworksAlgorithm.typeParameters` """ d = FireworksAlgorithm.typeParameters() d['A_cf'] = lambda x: isinstance(x, (float, int)) and x > 0 d['C_a'] = lambda x: isinstance(x, (float, int)) and x > 1 d['C_r'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 d['epsilon'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 return d
[docs] def setParameters(self, A_cf=20, C_a=1.2, C_r=0.9, epsilon=1e-8, **ukwargs): r"""Set core arguments of DynamicFireworksAlgorithmGauss. Args: A_cf (Union[int, float]): C_a (Union[int, float]): C_r (Union[int, float]): epsilon (Union[int, float]): **ukwargs (Dict[str, Any]): Additional arguments. See Also: * :func:`FireworksAlgorithm.setParameters` """ FireworksAlgorithm.setParameters(self, **ukwargs) self.A_cf, self.C_a, self.C_r, self.epsilon = A_cf, C_a, C_r, epsilon
[docs] def initAmplitude(self, task): r"""Initialize amplitude. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray]: 1. Initial amplitudes. 2. Amplitude for best spark. """ return FireworksAlgorithm.initAmplitude(self, task), task.bRange
[docs] def Mapping(self, x, task): r"""Fix out of bound solution/individual. Args: x (numpy.ndarray): Individual. task (Task): Optimization task. Returns: numpy.ndarray: Fixed individual. """ ir = where(x > task.Upper) x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) ir = where(x < task.Lower) x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) return x
[docs] def repair(self, x, d, epsilon): r"""Repair solution. Args: x (numpy.ndarray): Individual. d (numpy.ndarray): Default value. epsilon (float): Limiting value. Returns: numpy.ndarray: Fixed solution. """ ir = where(x <= epsilon) x[ir] = d[ir] return x
[docs] def NextGeneration(self, FW, FW_f, FWn, task): r"""TODO. Args: FW (numpy.ndarray): Current population. FW_f (numpy.ndarray[float]): Current populations function/fitness values. FWn (numpy.ndarray): New population. task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float]]: 1. New population. 2. New populations function/fitness values. """ FWn_f = apply_along_axis(task.eval, 1, FWn) ib = argmin(FWn_f) for i, f in enumerate(FW_f): r = self.randint(len(FWn)) if FWn_f[r] < f: FW[i], FW_f[i] = FWn[r], FWn_f[r] FW[0], FW_f[0] = FWn[ib], FWn_f[ib] return FW, FW_f
[docs] def uCF(self, xnb, xcb, xcb_f, xb, xb_f, Acf, task): r"""TODO. Args: xnb: xcb: xcb_f: xb: xb_f: Acf: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, float, numpy.ndarray]: 1. TODO """ xnb_f = apply_along_axis(task.eval, 1, xnb) ib_f = argmin(xnb_f) if xnb_f[ib_f] <= xb_f: xb, xb_f = xnb[ib_f], xnb_f[ib_f] Acf = self.repair(Acf, task.bRange, self.epsilon) if xb_f >= xcb_f: xb, xb_f, Acf = xcb, xcb_f, Acf * self.C_a else: Acf = Acf * self.C_r return xb, xb_f, Acf
[docs] def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): return FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As)
[docs] def initPopulation(self, task): r"""Initialize population. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: 1. Initialized population. 2. Initialized population function/fitness values. 3. Additional arguments: * Ah (): TODO * Ab (): TODO """ FW, FW_f, _ = Algorithm.initPopulation(self, task) Ah, Ab = self.initAmplitude(task) return FW, FW_f, {'Ah': Ah, 'Ab': Ab}
[docs] def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): r"""Core function of DynamicFireworksAlgorithmGauss algorithm. Args: task (Task): Optimization task. FW (numpy.ndarray): Current population. FW_f (numpy.ndarray): Current populations function/fitness values. xb (numpy.ndarray): Global best individual. fxb (float): Global best fitness/function value. Ah (Union[numpy.ndarray, float]): TODO Ab (Union[numpy.ndarray, float]): TODO **dparams (Dict[str, Any]): Additional arguments. Returns: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: 1. New population. 2. New populations fitness/function values. 3. New global best solution. 4. New global best solutions fitness/objective value. 5. Additional arguments: * Ah (Union[numpy.ndarray, float]): TODO * Ab (Union[numpy.ndarray, float]): TODO """ iw, ib = argmax(FW_f), argmin(FW_f) Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) iw, ib = argmax(FW_f), 0 xb, fxb, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) return FW, FW_f, xb, fxb, {'Ah': Ah, 'Ab': Ab}
[docs]class DynamicFireworksAlgorithm(DynamicFireworksAlgorithmGauss): r"""Implementation of dynamic fireworks algorithm. Algorithm: Dynamic Fireworks Algorithm Date: 2018 Authors: Klemen Berkovič License: MIT Reference URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 Reference paper: S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 Attributes: Name (List[str]): List of strings representing algorithm name. See Also: * :class:`NiaPy.algorithms.basic.DynamicFireworksAlgorithmGauss` """ Name = ['DynamicFireworksAlgorithm', 'dynFWA']
[docs] @staticmethod def algorithmInfo(): r"""Get default information of algorithm. Returns: str: Basic information. See Also: * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` """ return r"""S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485"""
[docs] def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): r"""Core function of Dynamic Fireworks Algorithm. Args: task (Task): Optimization task FW (numpy.ndarray): Current population FW_f (numpy.ndarray[float]): Current population fitness/function values xb (numpy.ndarray): Current best solution fxb (float): Current best solution's fitness/function value Ah (): TODO Ab (): TODO **dparams: Returns: Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: 1. New population. 2. New population function/fitness values. 3. Additional arguments: * Ah (): TODO * Ab (): TODO """ iw, ib = argmax(FW_f), argmin(FW_f) Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) iw, ib = argmax(FW_f), 0 xb, fxb, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) return FW, FW_f, xb, fxb, {'Ah': Ah, 'Ab': Ab}
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3