Source code for NiaPy.algorithms.other.hc

# encoding=utf8
import logging

from numpy import random as rand

from NiaPy.algorithms.algorithm import Algorithm

logging.basicConfig()
logger = logging.getLogger('NiaPy.algorithms.other')
logger.setLevel('INFO')

__all__ = ['HillClimbAlgorithm']

def Neighborhood(x, delta, task, rnd=rand):
	r"""Get neighbours of point.

	Args:
		x numpy.ndarray: Point.
		delta (float): Standard deviation.
		task (Task): Optimization task.
		rnd (Optional[mtrand.RandomState]): Random generator.

	Returns:
		Tuple[numpy.ndarray, float]:
			1. New solution.
			2. New solutions function/fitness value.
	"""
	X = x + rnd.normal(0, delta, task.D)
	X = task.repair(X, rnd)
	Xfit = task.eval(X)
	return X, Xfit

[docs]class HillClimbAlgorithm(Algorithm): r"""Implementation of iterative hill climbing algorithm. Algorithm: Hill Climbing Algorithm Date: 2018 Authors: Jan Popič License: MIT Reference URL: Reference paper: See Also: * :class:`NiaPy.algorithms.Algorithm` Attributes: delta (float): Change for searching in neighborhood. Neighborhood (Callable[numpy.ndarray, float, Task], Tuple[numpy.ndarray, float]]): Function for getting neighbours. """ Name = ['HillClimbAlgorithm', 'BBFA']
[docs] @staticmethod def algorithmInfo(): r"""Get basic information about the algorithm. Returns: str: Basic information. See Also: :func:`NiaPy.algorithms.algorithm.Algorithm.algorithmInfo` """ return r"""TODO"""
[docs] @staticmethod def typeParameters(): r"""TODO. Returns: Dict[str, Callable]: * delta (Callable[[Union[int, float]], bool]): TODO """ return {'delta': lambda x: isinstance(x, (int, float)) and x > 0}
[docs] def setParameters(self, delta=0.5, Neighborhood=Neighborhood, **ukwargs): r"""Set the algorithm parameters/arguments. Args: * delta (Optional[float]): Change for searching in neighborhood. * Neighborhood (Optional[Callable[numpy.ndarray, float, Task], Tuple[numpy.ndarray, float]]]): Function for getting neighbours. """ Algorithm.setParameters(self, NP=1, **ukwargs) self.delta, self.Neighborhood = delta, Neighborhood
[docs] def getParameters(self): d = Algorithm.getParameters(self) d.update({ 'delta': self.delta, 'Neighborhood': self.Neighborhood }) return d
[docs] def initPopulation(self, task): r"""Initialize stating point. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, float, Dict[str, Any]]: 1. New individual. 2. New individual function/fitness value. 3. Additional arguments. """ x = task.Lower + self.rand(task.D) * task.bRange return x, task.eval(x), {}
[docs] def runIteration(self, task, x, fx, xb, fxb, **dparams): r"""Core function of HillClimbAlgorithm algorithm. Args: task (Task): Optimization task. x (numpy.ndarray): Current solution. fx (float): Current solutions fitness/function value. xb (numpy.ndarray): Global best solution. fxb (float): Global best solutions function/fitness value. **dparams (Dict[str, Any]): Additional arguments. Returns: Tuple[numpy.ndarray, float, numpy.ndarray, float, Dict[str, Any]]: 1. New solution. 2. New solutions function/fitness value. 3. Additional arguments. """ lo, xn = False, task.bcLower() + task.bcRange() * self.rand(task.D) xn_f = task.eval(xn) while not lo: yn, yn_f = self.Neighborhood(x, self.delta, task, rnd=self.Rand) if yn_f < xn_f: xn, xn_f = yn, yn_f else: lo = True or task.stopCond() xb, fxb = self.getBest(xn, xn_f, xb, fxb) return xn, xn_f, xb, fxb, {}
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3