Source code for NiaPy.benchmarks.perm

# encoding=utf8

"""Implementations of Perm function."""

from NiaPy.benchmarks.benchmark import Benchmark

__all__ = ['Perm']

[docs]class Perm(Benchmark): r"""Implementations of Perm functions. Date: 2018 Author: Klemen Berkovič License: MIT Arguments: beta {real} -- value added to inner sum of funciton Function: **Perm Function** :math:`f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-D, D]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(\textbf{x}^*) = 0` at :math:`\textbf{x}^* = (1, \frac{1}{2}, \cdots , \frac{1}{i} , \cdots , \frac{1}{D})` LaTeX formats: Inline: $f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2$ Equation: \begin{equation} f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2 \end{equation} Domain: $-D \leq x_i \leq D$ Reference: https://www.sfu.ca/~ssurjano/perm0db.html """ Name = ['Perm']
[docs] def __init__(self, D=10.0, beta=.5): r"""Initialize of Bent Cigar benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, -D, D) Perm.beta = beta
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\textbf{x}) = \sum_{i = 1}^D \left( \sum_{j = 1}^D (j - \beta) \left( x_j^i - \frac{1}{j^i} \right) \right)^2$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ beta = self.beta def f(D, X): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ v = .0 for i in range(1, D + 1): vv = .0 for j in range(1, D + 1): vv += (j + beta) * (X[j - 1] ** i - 1 / j ** i) v += vv ** 2 return v return f
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3