Source code for NiaPy.benchmarks.quintic

# encoding=utf8

"""Implementaiton of Quintic funcion."""

import math
from NiaPy.benchmarks.benchmark import Benchmark

__all__ = ['Quintic']


[docs]class Quintic(Benchmark): r"""Implementation of Quintic function. Date: 2018 Author: Lucija Brezočnik License: MIT Function: **Quintic function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \left| x_i^5 - 3x_i^4 + 4x_i^3 + 2x_i^2 - 10x_i - 4\right|` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-10, 10]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = f(-1\; \text{or}\; 2)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \left| x_i^5 - 3x_i^4 + 4x_i^3 + 2x_i^2 - 10x_i - 4\right|$ Equation: \begin{equation} f(\mathbf{x}) = \sum_{i=1}^D \left| x_i^5 - 3x_i^4 + 4x_i^3 + 2x_i^2 - 10x_i - 4\right| \end{equation} Domain: $-10 \leq x_i \leq 10$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['Quintic']
[docs] def __init__(self, Lower=-10.0, Upper=10.0): r"""Initialize of Quintic benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \sum_{i=1}^D \left| x_i^5 - 3x_i^4 + 4x_i^3 + 2x_i^2 - 10x_i - 4\right|$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): val += abs(math.pow(sol[i], 5) - 3.0 * math.pow(sol[i], 4) + 4.0 * math.pow(sol[i], 3) + 2.0 * math.pow(sol[i], 2) - 10.0 * sol[i] - 4) return val return evaluate