Source code for NiaPy.benchmarks.schaffer

# encoding=utf8

"""Implementations of Schwefels functions."""

from math import sin, cos, sqrt
from NiaPy.benchmarks.benchmark import Benchmark

__all__ = ['SchafferN2', 'SchafferN4', 'ExpandedSchaffer']

[docs]class SchafferN2(Benchmark): r"""Implementations of Schaffer N. 2 functions. Date: 2018 Author: Klemen Berkovič License: MIT Function: **Schaffer N. 2 Function** :math:`f(\textbf{x}) = 0.5 + \frac{ \sin^2 \left( x_1^2 - x_2^2 \right) - 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 }` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (420.968746,...,420.968746)` LaTeX formats: Inline: $f(\textbf{x}) = 0.5 + \frac{ \sin^2 \left( x_1^2 - x_2^2 \right) - 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 }$ Equation: \begin{equation} f(\textbf{x}) = 0.5 + \frac{ \sin^2 \left( x_1^2 - x_2^2 \right) - 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 } \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference: http://www5.zzu.edu.cn/__local/A/69/BC/D3B5DFE94CD2574B38AD7CD1D12_C802DAFE_BC0C0.pdf """ Name = ['SchafferN2']
[docs] def __init__(self, Lower=-100.0, Upper=100.0): r"""Initialize of SchafferN2 benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\textbf{x}) = 0.5 + \frac{ \sin^2 \left( x_1^2 - x_2^2 \right) - 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 }$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def f(D, x): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ return 0.5 + (sin(x[0] ** 2 - x[1] ** 2) ** 2 - 0.5) / (1 + 0.001 * (x[0] ** 2 + x[1] ** 2)) ** 2 return f
[docs]class SchafferN4(Benchmark): r"""Implementations of Schaffer N. 2 functions. Date: 2018 Author: Klemen Berkovič License: MIT Function: **Schaffer N. 2 Function** :math:`f(\textbf{x}) = 0.5 + \frac{ \cos^2 \left( \sin \left( x_1^2 - x_2^2 \right) \right)- 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 }` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (420.968746,...,420.968746)` LaTeX formats: Inline: $f(\textbf{x}) = 0.5 + \frac{ \cos^2 \left( \sin \left( x_1^2 - x_2^2 \right) \right)- 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 }$ Equation: \begin{equation} f(\textbf{x}) = 0.5 + \frac{ \cos^2 \left( \sin \left( x_1^2 - x_2^2 \right) \right)- 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 } \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference: http://www5.zzu.edu.cn/__local/A/69/BC/D3B5DFE94CD2574B38AD7CD1D12_C802DAFE_BC0C0.pdf """ Name = ['SchafferN4']
[docs] def __init__(self, Lower=-100.0, Upper=100.0): r"""Initialize of ScahfferN4 benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\textbf{x}) = 0.5 + \frac{ \cos^2 \left( \sin \left( x_1^2 - x_2^2 \right) \right)- 0.5 }{ \left( 1 + 0.001 \left( x_1^2 + x_2^2 \right) \right)^2 }$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def f(D, x): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ return 0.5 + (cos(sin(x[0] ** 2 - x[1] ** 2)) ** 2 - 0.5) / (1 + 0.001 * (x[0] ** 2 + x[1] ** 2)) ** 2 return f
[docs]class ExpandedSchaffer(Benchmark): r"""Implementations of Expanded Schaffer functions. Date: 2018 Author: Klemen Berkovič License: MIT Function: **Expanded Schaffer Function** :math:`f(\textbf{x}) = g(x_D, x_1) + \sum_{i=2}^D g(x_{i - 1}, x_i) \\ g(x, y) = 0.5 + \frac{\sin \left(\sqrt{x^2 + y^2} \right)^2 - 0.5}{\left( 1 + 0.001 (x^2 + y^2) \right)}^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (420.968746,...,420.968746)` LaTeX formats: Inline: $f(\textbf{x}) = g(x_D, x_1) + \sum_{i=2}^D g(x_{i - 1}, x_i) \\ g(x, y) = 0.5 + \frac{\sin \left(\sqrt{x^2 + y^2} \right)^2 - 0.5}{\left( 1 + 0.001 (x^2 + y^2) \right)}^2$ Equation: \begin{equation} f(\textbf{x}) = g(x_D, x_1) + \sum_{i=2}^D g(x_{i - 1}, x_i) \\ g(x, y) = 0.5 + \frac{\sin \left(\sqrt{x^2 + y^2} \right)^2 - 0.5}{\left( 1 + 0.001 (x^2 + y^2) \right)}^2 \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference: http://www5.zzu.edu.cn/__local/A/69/BC/D3B5DFE94CD2574B38AD7CD1D12_C802DAFE_BC0C0.pdf """ Name = ['ExpandedSchaffer']
[docs] def __init__(self, Lower=-100.0, Upper=100.0): r"""Initialize of Expanded Scaffer benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\textbf{x}) = g(x_D, x_1) + \sum_{i=2}^D g(x_{i - 1}, x_i) \\ g(x, y) = 0.5 + \frac{\sin \left(\sqrt{x^2 + y^2} \right)^2 - 0.5}{\left( 1 + 0.001 (x^2 + y^2) \right)}^2$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def g(x, y): return 0.5 + (sin(sqrt(x ** 2 + y ** 2)) ** 2 - 0.5) / (1 + 0.001 * (x ** 2 + y ** 2)) ** 2 def f(D, x): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(1, D): val += g(x[i - 1], x[i]) return g(x[D - 1], x[0]) + val return f
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3