Source code for NiaPy.benchmarks.sphere

# encoding=utf8

"""Sphere benchmarks."""

from numpy import abs
from NiaPy.benchmarks.benchmark import Benchmark

__all__ = ['Sphere', 'Sphere2', 'Sphere3']

[docs]class Sphere(Benchmark): r"""Implementation of Sphere functions. Date: 2018 Authors: Iztok Fister Jr. License: MIT Function: **Sphere function** :math:`f(\mathbf{x}) = \sum_{i=1}^D x_i^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [0, 10]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D x_i^2$ Equation: \begin{equation}f(\mathbf{x}) = \sum_{i=1}^D x_i^2 \end{equation} Domain: $0 \leq x_i \leq 10$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['Sphere']
[docs] def __init__(self, Lower=-5.12, Upper=5.12): r"""Initialize of Sphere benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \sum_{i=1}^D x_i^2$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): val += sol[i] ** 2 return val return evaluate
[docs]class Sphere2(Benchmark): r"""Implementation of Sphere with different powers function. Date: 2018 Authors: Klemen Berkovič License: MIT Function: **Sun of different powers function** :math:`f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1}` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-1, 1]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1}$ Equation: \begin{equation} f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1} \end{equation} Domain: $-1 \leq x_i \leq 1$ Reference URL: https://www.sfu.ca/~ssurjano/sumpow.html """ Name = ['Sphere2']
[docs] def __init__(self, Lower=-1., Upper=1.): r"""Initialize of Sphere2 benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1}$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): val += abs(sol[i]) ** (i + 2) return val return evaluate
[docs]class Sphere3(Benchmark): r"""Implementation of rotated hyper-ellipsoid function. Date: 2018 Authors: Klemen Berkovič License: MIT Function: **Sun of rotated hyper-elliposid function** :math:`f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-65.536, 65.536]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2$ Equation: \begin{equation} f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2 \end{equation} Domain: $-65.536 \leq x_i \leq 65.536$ Reference URL: https://www.sfu.ca/~ssurjano/rothyp.html """ Name = ['Sphere3']
[docs] def __init__(self, Lower=-65.536, Upper=65.536): r"""Initialize of Sphere3 benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): v = .0 for j in range(i + 1): val += abs(sol[j]) ** 2 val += v return val return evaluate
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3