Source code for NiaPy.benchmarks.step

# encoding=utf8

"""Implementations of Step functions."""

import math
from NiaPy.benchmarks.benchmark import Benchmark

__all__ = ['Step', 'Step2', 'Step3']

[docs]class Step(Benchmark): r"""Implementation of Step function. Date: 2018 Author: Lucija Brezočnik License: MIT Function: **Step function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor \left | x_i \right | \rfloor \right)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor \left | x_i \right | \rfloor \right)$ Equation: \begin{equation} f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor \left | x_i \right | \rfloor \right) \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['Step']
[docs] def __init__(self, Lower=-100.0, Upper=100.0): r"""Initialize of Step benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor \left | x_i \right | \rfloor \right)$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): val += math.floor(abs(sol[i])) return val return evaluate
[docs]class Step2(Benchmark): r"""Step2 function implementation. Date: 2018 Author: Lucija Brezočnik Licence: MIT Function: **Step2 function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i + 0.5 \rfloor \right)^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **lobal minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (-0.5,...,-0.5)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i + 0.5 \rfloor \right)^2$ Equation: \begin{equation}f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i + 0.5 \rfloor \right)^2 \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['Step2']
[docs] def __init__(self, Lower=-100.0, Upper=100.0): r"""Initialize of Step2 benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i + 0.5 \rfloor \right)^2$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): val += math.pow(math.floor(sol[i] + 0.5), 2) return val return evaluate
[docs]class Step3(Benchmark): r"""Step3 function implementation. Date: 2018 Author: Lucija Brezočnik Licence: MIT Function: **Step3 function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i^2 \rfloor \right)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i^2 \rfloor \right)$ Equation: \begin{equation}f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i^2 \rfloor \right)\end{equation} Domain: $-100 \leq x_i \leq 100$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['Step3']
[docs] def __init__(self, Lower=-100.0, Upper=100.0): r"""Initialize of Step3 benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i^2 \rfloor \right)$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): val += math.floor(math.pow(sol[i], 2)) return val return evaluate