Source code for NiaPy.benchmarks.styblinskiTang

# encoding=utf8

"""Stybliski Tang benchmark."""

import math
from NiaPy.benchmarks.benchmark import Benchmark

__all__ = ['StyblinskiTang']

[docs]class StyblinskiTang(Benchmark): r"""Implementation of Styblinski-Tang functions. Date: 2018 Authors: Lucija Brezočnik License: MIT Function: **Styblinski-Tang function** :math:`f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^D \left( x_i^4 - 16x_i^2 + 5x_i \right)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-5, 5]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = -78.332`, at :math:`x^* = (-2.903534,...,-2.903534)` LaTeX formats: Inline: $f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^D \left( x_i^4 - 16x_i^2 + 5x_i \right) $ Equation: \begin{equation}f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^D \left( x_i^4 - 16x_i^2 + 5x_i \right) \end{equation} Domain: $-5 \leq x_i \leq 5$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['StyblinskiTang']
[docs] def __init__(self, Lower=-5.0, Upper=5.0): r"""Initialize of Styblinski Tang benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^D \left( x_i^4 - 16x_i^2 + 5x_i \right) $'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): val += (math.pow(sol[i], 4) - 16.0 * math.pow(sol[i], 2) + 5.0 * sol[i]) return 0.5 * val return evaluate