Source code for NiaPy.benchmarks.whitley

# encoding=utf8

"""Whitley bechmark."""

import math
from NiaPy.benchmarks.benchmark import Benchmark

__all__ = ['Whitley']

[docs]class Whitley(Benchmark): r"""Implementation of Whitley function. Date: 2018 Authors: Grega Vrbančič and Lucija Brezočnik License: MIT Function: **Whitley function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \sum_{j=1}^D \left(\frac{(100(x_i^2-x_j)^2 + (1-x_j)^2)^2}{4000} - \cos(100(x_i^2-x_j)^2 + (1-x_j)^2)+1\right)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-10.24, 10.24]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (1,...,1)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \sum_{j=1}^D \left(\frac{(100(x_i^2-x_j)^2 + (1-x_j)^2)^2}{4000} - \cos(100(x_i^2-x_j)^2 + (1-x_j)^2)+1\right)$ Equation: \begin{equation}f(\mathbf{x}) = \sum_{i=1}^D \sum_{j=1}^D \left(\frac{(100(x_i^2-x_j)^2 + (1-x_j)^2)^2}{4000} - \cos(100(x_i^2-x_j)^2 + (1-x_j)^2)+1\right) \end{equation} Domain: $-10.24 \leq x_i \leq 10.24$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['Whitley']
[docs] def __init__(self, Lower=-10.24, Upper=10.24): r"""Initialize of Whitley benchmark. Args: Lower (Optional[float]): Lower bound of problem. Upper (Optional[float]): Upper bound of problem. See Also: :func:`NiaPy.benchmarks.Benchmark.__init__` """ Benchmark.__init__(self, Lower, Upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \sum_{i=1}^D \sum_{j=1}^D \left(\frac{(100(x_i^2-x_j)^2 + (1-x_j)^2)^2}{4000} - \cos(100(x_i^2-x_j)^2 + (1-x_j)^2)+1\right)$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function """ def evaluate(D, sol): r"""Fitness function. Args: D (int): Dimensionality of the problem sol (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(D): for j in range(D): temp = 100 * \ math.pow((math.pow(sol[i], 2) - sol[j]), 2) + math.pow( 1 - sol[j], 2) val += (float(math.pow(temp, 2)) / 4000.0) - \ math.cos(temp) + 1 return val return evaluate