Source code for niapy.benchmarks.chung_reynolds

# encoding=utf8

"""Implementation of Chung Reynolds function."""

import math
from niapy.benchmarks.benchmark import Benchmark

__all__ = ['ChungReynolds']


[docs]class ChungReynolds(Benchmark): r"""Implementation of Chung Reynolds functions. Date: 2018 Authors: Lucija Brezočnik License: MIT Function: **Chung Reynolds function** :math:`f(\mathbf{x}) = \left(\sum_{i=1}^D x_i^2\right)^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D` **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \left(\sum_{i=1}^D x_i^2\right)^2$ Equation: \begin{equation} f(\mathbf{x}) = \left(\sum_{i=1}^D x_i^2\right)^2 \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ Name = ['ChungReynolds']
[docs] def __init__(self, lower=-100.0, upper=100.0): r"""Initialize of Chung Reynolds benchmark. Args: lower (Optional[float]): Lower bound of problem. upper (Optional[float]): Upper bound of problem. See Also: :func:`niapy.benchmarks.Benchmark.__init__` """ super().__init__(lower, upper)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code. """ return r'''$f(\mathbf{x}) = \left(\sum_{i=1}^D x_i^2\right)^2$'''
[docs] def function(self): r"""Return benchmark evaluation function. Returns: Callable[[int, Union[int, float, List[int, float], numpy.ndarray]], float]: Fitness function. """ def evaluate(dimension, x): r"""Fitness function. Args: dimension (int): Dimensionality of the problem x (Union[int, float, List[int, float], numpy.ndarray]): Solution to check. Returns: float: Fitness value for the solution. """ val = 0.0 for i in range(dimension): val += math.pow(x[i], 2) return math.pow(val, 2) return evaluate