Nature-inspired algorithms are a very popular tool for solving optimization problems. Since the beginning of their era, numerous variants of nature-inspired algorithms were developed. To prove their versatility, those were tested in various domains on various applications, especially when they are hybridized, modified or adapted. However, implementation of nature-inspired algorithms is sometimes difficult, complex and tedious task. In order to break this wall, NiaPy is intended for simple and quick use, without spending a time for implementing algorithms from scratch.


Our mission is to build a collection of nature-inspired algorithms and create a simple interface for managing the optimization process along with statistical evaluation. NiaPy offers:

  • numerous optimization problem implementations,

  • use of various nature-inspired algorithms without struggle and effort with a simple interface, and

  • easy comparison between nature-inspired algorithms.


This package is distributed under the MIT License.


This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!