Source code for niapy.algorithms.basic.cso

# encoding=utf8
import logging
import math

import numpy as np

from niapy.algorithms.algorithm import Algorithm

logging.basicConfig()
logger = logging.getLogger('niapy.algorithms.basic')
logger.setLevel('INFO')

__all__ = ['CatSwarmOptimization']


[docs]class CatSwarmOptimization(Algorithm): r"""Implementation of Cat swarm optimization algorithm. **Algorithm:** Cat swarm optimization **Date:** 2019 **Author:** Mihael Baketarić **License:** MIT **Reference paper:** Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg. """ Name = ['CatSwarmOptimization', 'CSO']
[docs] @staticmethod def info(): r"""Get algorithm information. Returns: str: Algorithm information. See Also: * :func:`niapy.algorithms.Algorithm.info` """ return r"""Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg."""
[docs] def __init__(self, population_size=30, mixture_ratio=0.1, c1=2.05, smp=3, spc=True, cdc=0.85, srd=0.2, max_velocity=1.9, *args, **kwargs): """Initialize CatSwarmOptimization. Args: population_size (int): Number of individuals in population. mixture_ratio (float): Mixture ratio. c1 (float): Constant in tracing mode. smp (int): Seeking memory pool. spc (bool): Self-position considering. cdc (float): Decides how many dimensions will be varied. srd (float): Seeking range of the selected dimension. max_velocity (float): Maximal velocity. See Also: * :func:`niapy.algorithms.Algorithm.__init__` """ super().__init__(population_size, *args, **kwargs) self.mixture_ratio = mixture_ratio self.c1 = c1 self.smp = smp self.spc = spc self.cdc = cdc self.srd = srd self.max_velocity = max_velocity
[docs] def set_parameters(self, population_size=30, mixture_ratio=0.1, c1=2.05, smp=3, spc=True, cdc=0.85, srd=0.2, max_velocity=1.9, **kwargs): r"""Set the algorithm parameters. Args: population_size (int): Number of individuals in population. mixture_ratio (float): Mixture ratio. c1 (float): Constant in tracing mode. smp (int): Seeking memory pool. spc (bool): Self-position considering. cdc (float): Decides how many dimensions will be varied. srd (float): Seeking range of the selected dimension. max_velocity (float): Maximal velocity. See Also: * :func:`niapy.algorithms.Algorithm.set_parameters` """ super().set_parameters(population_size, **kwargs) self.mixture_ratio = mixture_ratio self.c1 = c1 self.smp = smp self.spc = spc self.cdc = cdc self.srd = srd self.max_velocity = max_velocity
[docs] def get_parameters(self): r"""Get parameters values of the algorithm. Returns: Dict[str, Any]: Algorithm parameters. """ params = super().get_parameters() params.update({ 'mixture_ratio': self.mixture_ratio, 'c1': self.c1, 'smp': self.smp, 'spc': self.spc, 'cdc': self.cdc, 'srd': self.srd, 'max_velocity': self.max_velocity }) return params
[docs] def init_population(self, task): r"""Initialize population. Args: task (Task): Optimization task. Returns: Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: 1. Initialized population. 2. Initialized populations fitness/function values. 3. Additional arguments: * Dictionary of modes (seek or trace) and velocities for each cat See Also: * :func:`niapy.algorithms.Algorithm.init_population` """ pop, fpop, d = super().init_population(task) d['velocities'] = self.uniform(-self.max_velocity, self.max_velocity, (self.population_size, task.dimension)) return pop, fpop, d
[docs] def random_seek_trace(self): r"""Set cats into seeking/tracing mode randomly. Returns: numpy.ndarray: One or zero. One means tracing mode. Zero means seeking mode. Length of list is equal to population_size. """ modes = np.zeros(self.population_size, dtype=np.int32) indices = self.rng.choice(self.population_size, int(self.population_size * self.mixture_ratio), replace=False) modes[indices] = 1 return modes
[docs] def weighted_selection(self, weights): r"""Random selection considering the weights. Args: weights (numpy.ndarray): weight for each potential position. Returns: int: index of selected next position. """ cumulative_sum = np.cumsum(weights) return np.argmax(cumulative_sum >= (self.random() * cumulative_sum[-1]))
[docs] def seeking_mode(self, task, cat, cat_fitness, pop, fpop, fxb): r"""Seeking mode. Args: task (Task): Optimization task. cat (numpy.ndarray): Individual from population. cat_fitness (float): Current individual's fitness/function value. pop (numpy.ndarray): Current population. fpop (numpy.ndarray): Current population fitness/function values. fxb (float): Current best cat fitness/function value. Returns: Tuple[numpy.ndarray, float, numpy.ndarray, float]: 1. Updated individual's position 2. Updated individual's fitness/function value 3. Updated global best position 4. Updated global best fitness/function value """ cat_copies = [] cat_copies_fs = [] for j in range(self.smp - 1 if self.spc else self.smp): cat_copies.append(cat.copy()) indexes = np.arange(task.dimension) self.rng.shuffle(indexes) to_vary_indexes = indexes[:int(task.dimension * self.cdc)] if self.integers(2) == 1: cat_copies[j][to_vary_indexes] += cat_copies[j][to_vary_indexes] * self.srd else: cat_copies[j][to_vary_indexes] -= cat_copies[j][to_vary_indexes] * self.srd cat_copies[j] = task.repair(cat_copies[j]) cat_copies_fs.append(task.eval(cat_copies[j])) if self.spc: cat_copies.append(cat.copy()) cat_copies_fs.append(cat_fitness) cat_copies_select_probs = np.ones(len(cat_copies)) worst_fitness = np.max(cat_copies_fs) best_fitness = np.min(cat_copies_fs) if any(x != cat_copies_fs[0] for x in cat_copies_fs): fb = worst_fitness if math.isinf(fb): cat_copies_select_probs = np.full(len(cat_copies), fb) else: cat_copies_select_probs = np.abs(cat_copies_fs - fb) / (worst_fitness - best_fitness) if best_fitness < fxb: ind = self.integers(self.population_size) pop[ind] = cat_copies[np.where(cat_copies_fs == best_fitness)[0][0]] fpop[ind] = best_fitness sel_index = self.weighted_selection(cat_copies_select_probs) return cat_copies[sel_index], cat_copies_fs[sel_index], pop, fpop
[docs] def tracing_mode(self, task, cat, velocity, xb): r"""Tracing mode. Args: task (Task): Optimization task. cat (numpy.ndarray): Individual from population. velocity (numpy.ndarray): Velocity of individual. xb (numpy.ndarray): Current best individual. Returns: Tuple[numpy.ndarray, float, numpy.ndarray]: 1. Updated individual's position 2. Updated individual's fitness/function value 3. Updated individual's velocity vector """ new_velocity = np.clip(velocity + (self.random(len(velocity)) * self.c1 * (xb - cat)), -self.max_velocity, self.max_velocity) cat_new = task.repair(cat + new_velocity) return cat_new, task.eval(cat_new), new_velocity
[docs] def run_iteration(self, task, population, population_fitness, best_x, best_fitness, **params): r"""Core function of Cat Swarm Optimization algorithm. Args: task (Task): Optimization task. population (numpy.ndarray): Current population. population_fitness (numpy.ndarray): Current population fitness/function values. best_x (numpy.ndarray): Current best individual. best_fitness (float): Current best cat fitness/function value. **params (Dict[str, Any]): Additional function arguments. Returns: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: 1. New population. 2. New population fitness/function values. 3. New global best solution. 4. New global best solutions fitness/objective value. 5. Additional arguments: * velocities (numpy.ndarray): velocities of cats. """ modes = self.random_seek_trace() velocities = params.pop('velocities') pop_copies = population.copy() for k in range(len(pop_copies)): if modes[k] == 0: pop_copies[k], population_fitness[k], pop_copies, population_fitness = self.seeking_mode(task, pop_copies[k], population_fitness[k], pop_copies, population_fitness, best_fitness) else: # if cat in tracing mode pop_copies[k], population_fitness[k], velocities[k] = self.tracing_mode(task, pop_copies[k], velocities[k], best_x) best_index = np.argmin(population_fitness) if population_fitness[best_index] < best_fitness: best_x, best_fitness = pop_copies[best_index].copy(), population_fitness[best_index] return pop_copies, population_fitness, best_x, best_fitness, {'velocities': velocities}