Source code for niapy.problems.dixon_price
# encoding=utf8
"""Implementations of Dixon Price function."""
import numpy as np
from niapy.problems.problem import Problem
__all__ = ['DixonPrice']
[docs]class DixonPrice(Problem):
r"""Implementations of Dixon Price function.
Date: 2018
Author: Klemen Berkovič
License: MIT
Function:
**Dixon Price Function**
:math:`f(\textbf{x}) = (x_1 - 1)^2 + \sum_{i = 2}^D i (2x_i^2 - x_{i - 1})^2`
**Input domain:**
The function can be defined on any input domain but it is usually
evaluated on the hypercube :math:`x_i ∈ [-10, 10]`, for all :math:`i = 1, 2,..., D`.
**Global minimum:**
:math:`f(\textbf{x}^*) = 0` at :math:`\textbf{x}^* = (2^{-\frac{2^1 - 2}{2^1}}, \cdots , 2^{-\frac{2^i - 2}{2^i}} , \cdots , 2^{-\frac{2^D - 2}{2^D}})`
LaTeX formats:
Inline:
$f(\textbf{x}) = (x_1 - 1)^2 + \sum_{i = 2}^D i (2x_i^2 - x_{i - 1})^2$
Equation:
\begin{equation} f(\textbf{x}) = (x_1 - 1)^2 + \sum_{i = 2}^D i (2x_i^2 - x_{i - 1})^2 \end{equation}
Domain:
$-10 \leq x_i \leq 10$
Reference:
https://www.sfu.ca/~ssurjano/dixonpr.html
"""
[docs] def __init__(self, dimension=4, lower=-10.0, upper=10.0, *args, **kwargs):
r"""Initialize Dixon Price problem..
Args:
dimension (Optional[int]): Dimension of the problem.
lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem.
upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem.
See Also:
:func:`niapy.problems.Problem.__init__`
"""
super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod
def latex_code():
r"""Return the latex code of the problem.
Returns:
str: Latex code.
"""
return r'''$f(\textbf{x}) = (x_1 - 1)^2 + \sum_{i = 2}^D i (2x_i^2 - x_{i - 1})^2$'''
def _evaluate(self, x):
indices = np.arange(2, self.dimension)
val = np.sum(indices * (2 * x[2:] ** 2 - x[1:self.dimension - 1]) ** 2)
return (x[0] - 1) ** 2 + val