Source code for niapy.problems.sphere

# encoding=utf8

"""Sphere problems."""

import numpy as np
from niapy.problems.problem import Problem

__all__ = ['Sphere', 'Sphere2', 'Sphere3']


[docs]class Sphere(Problem): r"""Implementation of Sphere functions. Date: 2018 Authors: Iztok Fister Jr. License: MIT Function: **Sphere function** :math:`f(\mathbf{x}) = \sum_{i=1}^D x_i^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [0, 10]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D x_i^2$ Equation: \begin{equation}f(\mathbf{x}) = \sum_{i=1}^D x_i^2 \end{equation} Domain: $0 \leq x_i \leq 10$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """
[docs] def __init__(self, dimension=4, lower=-5.12, upper=5.12, *args, **kwargs): r"""Initialize Sphere problem.. Args: dimension (Optional[int]): Dimension of the problem. lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem. upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem. See Also: :func:`niapy.problems.Problem.__init__` """ super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code. """ return r'''$f(\mathbf{x}) = \sum_{i=1}^D x_i^2$'''
def _evaluate(self, x): return np.sum(x ** 2)
[docs]class Sphere2(Problem): r"""Implementation of Sphere with different powers function. Date: 2018 Authors: Klemen Berkovič License: MIT Function: **Sun of different powers function** :math:`f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1}` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-1, 1]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1}$ Equation: \begin{equation} f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1} \end{equation} Domain: $-1 \leq x_i \leq 1$ Reference URL: https://www.sfu.ca/~ssurjano/sumpow.html """
[docs] def __init__(self, dimension=4, lower=-1.0, upper=1.0, *args, **kwargs): r"""Initialize Sphere2 problem.. Args: dimension (Optional[int]): Dimension of the problem. lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem. upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem. See Also: :func:`niapy.problems.Problem.__init__` """ super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code. """ return r'''$f(\textbf{x}) = \sum_{i = 1}^D \lvert x_i \rvert^{i + 1}$'''
def _evaluate(self, x): indices = np.arange(2, self.dimension + 2) return np.sum(np.power(np.abs(x), indices))
[docs]class Sphere3(Problem): r"""Implementation of rotated hyper-ellipsoid function. Date: 2018 Authors: Klemen Berkovič License: MIT Function: **Sun of rotated hyper-ellipsoid function** :math:`f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-65.536, 65.536]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2$ Equation: \begin{equation} f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2 \end{equation} Domain: $-65.536 \leq x_i \leq 65.536$ Reference URL: https://www.sfu.ca/~ssurjano/rothyp.html """
[docs] def __init__(self, dimension=4, lower=-65.536, upper=65.536, *args, **kwargs): r"""Initialize Sphere3 problem.. Args: dimension (Optional[int]): Dimension of the problem. lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem. upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem. See Also: :func:`niapy.problems.Problem.__init__` """ super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code. """ return r'''$f(\textbf{x}) = \sum_{i = 1}^D \sum_{j = 1}^i x_j^2$'''
def _evaluate(self, x): x_matrix = np.tile(x, (self.dimension, 1)) val = np.sum(np.tril(x_matrix) ** 2.0, axis=0) return np.sum(val)