Source code for niapy.problems.alpine

# encoding=utf8

"""Implementations of Alpine functions."""

import numpy as np
from niapy.problems.problem import Problem

__all__ = ['Alpine1', 'Alpine2']


[docs]class Alpine1(Problem): r"""Implementation of Alpine1 function. Date: 2018 Author: Lucija Brezočnik License: MIT Function: **Alpine1 function** :math:`f(\mathbf{x}) = \sum_{i=1}^{D} \lvert x_i \sin(x_i)+0.1x_i \rvert` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-10, 10]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^{D} \lvert x_i \sin(x_i)+0.1x_i \rvert$ Equation: \begin{equation} f(\mathbf{x}) = \sum_{i=1}^{D} \lvert x_i \sin(x_i)+0.1x_i \rvert \end{equation} Domain: $-10 \leq x_i \leq 10$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """
[docs] def __init__(self, dimension=4, lower=-10.0, upper=10.0, *args, **kwargs): r"""Initialize Alpine1 problem. Args: dimension (Optional[int]): Dimension of the problem. lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem. upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem. See Also: :func:`niapy.problems.Problem.__init__` """ super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code """ return r'''$f(\mathbf{x}) = \sum_{i=1}^{D} \lvert x_i \sin(x_i)+0.1x_i \rvert$'''
def _evaluate(self, x): return np.sum(np.abs(np.sin(x) + 0.1 * x))
[docs]class Alpine2(Problem): r"""Implementation of Alpine2 function. Date: 2018 Author: Lucija Brezočnik License: MIT Function: **Alpine2 function** :math:`f(\mathbf{x}) = \prod_{i=1}^{D} \sqrt{x_i} \sin(x_i)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [0, 10]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 2.808^D`, at :math:`x^* = (7.917,...,7.917)` LaTeX formats: Inline: $f(\mathbf{x}) = \prod_{i=1}^{D} \sqrt{x_i} \sin(x_i)$ Equation: \begin{equation} f(\mathbf{x}) = \prod_{i=1}^{D} \sqrt{x_i} \sin(x_i) \end{equation} Domain: $0 \leq x_i \leq 10$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """
[docs] def __init__(self, dimension=4, lower=0.0, upper=10.0, *args, **kwargs): r"""Initialize Alpine2 problem.. Args: dimension (Optional[int]): Dimension of the problem. lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem. upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem. See Also: :func:`niapy.problems.Problem.__init__` """ super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code. """ return r'''$f(\mathbf{x}) = \prod_{i=1}^{D} \sqrt{x_i} \sin(x_i)$'''
def _evaluate(self, x): return np.product(np.sqrt(x) * np.sin(x))