Source code for niapy.problems.levy

# encoding=utf8

"""Implementations of Levy function."""

import numpy as np
from niapy.problems.problem import Problem

__all__ = ['Levy']


[docs]class Levy(Problem): r"""Implementations of Levy functions. Date: 2018 Author: Klemen Berkovič License: MIT Function: **Levy Function** :math:`f(\textbf{x}) = \sin^2 (\pi w_1) + \sum_{i = 1}^{D - 1} (w_i - 1)^2 \left( 1 + 10 \sin^2 (\pi w_i + 1) \right) + (w_d - 1)^2 (1 + \sin^2 (2 \pi w_d)) \\ w_i = 1 + \frac{x_i - 1}{4}` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-10, 10]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(\textbf{x}^*) = 0` at :math:`\textbf{x}^* = (1, \cdots, 1)` LaTeX formats: Inline: $f(\textbf{x}) = \sin^2 (\pi w_1) + \sum_{i = 1}^{D - 1} (w_i - 1)^2 \left( 1 + 10 \sin^2 (\pi w_i + 1) \right) + (w_d - 1)^2 (1 + \sin^2 (2 \pi w_d)) \\ w_i = 1 + \frac{x_i - 1}{4}$ Equation: \begin{equation} f(\textbf{x}) = \sin^2 (\pi w_1) + \sum_{i = 1}^{D - 1} (w_i - 1)^2 \left( 1 + 10 \sin^2 (\pi w_i + 1) \right) + (w_d - 1)^2 (1 + \sin^2 (2 \pi w_d)) \\ w_i = 1 + \frac{x_i - 1}{4} \end{equation} Domain: $-10 \leq x_i \leq 10$ Reference: https://www.sfu.ca/~ssurjano/levy.html """
[docs] def __init__(self, dimension=4, lower=-10.0, upper=10.0, *args, **kwargs): r"""Initialize Levy problem.. Args: dimension (Optional[int]): Dimension of the problem. lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem. upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem. See Also: :func:`niapy.problems.Problem.__init__` """ super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code. """ return r'''$f(\textbf{x}) = \sin^2 (\pi w_1) + \sum_{i = 1}^{D - 1} (w_i - 1)^2 \left( 1 + 10 \sin^2 (\pi w_i + 1) \right) + (w_d - 1)^2 (1 + \sin^2 (2 \pi w_d)) \\ w_i = 1 + \frac{x_i - 1}{4}$'''
def _evaluate(self, x): w = 1 + (x - 1) / 4 term1 = np.sin(np.pi * w[0]) ** 2 wi = w[:-1] term2 = np.sum((wi - 1) ** 2 * (1 + 10 * np.sin(np.pi * wi + 1))) term3 = (w[-1] - 1) ** 2 * (1 + np.sin(2 * np.pi * w[-1]) ** 2) return term1 + term2 + term3