Source code for niapy.problems.rosenbrock

# encoding=utf8

"""Rosenbrock problem."""

import numpy as np
from niapy.problems.problem import Problem

__all__ = ['Rosenbrock']


[docs]class Rosenbrock(Problem): r"""Implementation of Rosenbrock problem. Date: 2018 Authors: Iztok Fister Jr. and Lucija Brezočnik License: MIT Function: **Rosenbrock function** :math:`f(\mathbf{x}) = \sum_{i=1}^{D-1} \left (100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-30, 30]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (1,...,1)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^{D-1} (100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2)$ Equation: \begin{equation} f(\mathbf{x}) = \sum_{i=1}^{D-1} (100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2) \end{equation} Domain: $-30 \leq x_i \leq 30$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """
[docs] def __init__(self, dimension=4, lower=-30.0, upper=30.0, *args, **kwargs): r"""Initialize Rosenbrock problem.. Args: dimension (Optional[int]): Dimension of the problem. lower (Optional[Union[float, Iterable[float]]]): Lower bounds of the problem. upper (Optional[Union[float, Iterable[float]]]): Upper bounds of the problem. See Also: :func:`niapy.problems.Problem.__init__` """ super().__init__(dimension, lower, upper, *args, **kwargs)
[docs] @staticmethod def latex_code(): r"""Return the latex code of the problem. Returns: str: Latex code. """ return r'''$f(\mathbf{x}) = \sum_{i=1}^{D-1} (100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2)$'''
def _evaluate(self, x): return np.sum(100.0 * (x[1:] - x[:-1] ** 2.0) ** 2.0 + (1 - x[:-1]) ** 2.0, axis=0)